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SUFFICIENCY AND THE NUMBER OF LEVEL CROSSINGS BY A STATIONARY PROCESS

Benjamin Kedem
University of Maryland, College Park

Summary. It is shown how to derive the exact distribution of the num-
ber of axis crossings by a stationary process when the binary process

obtained by clipping the original process is a pth-order Markov chain.
The same method is used in deriving the asymptotic distribution of the

number of upcrossings of a high level by a stationary process.

Key words and phrases: binary, Markov chain, level crossings, symbol

changes, upcrossings, high level

1. Introduction. Let Zt’ t=1l,...,n, be a strictly stationary time
series, and let Xt, t=1,...,n, be the binary time series which takes
the values 1 whenever th a and 0 otherwise. Xt as well as quantities

defined by it should be indexed by the level a, but except in one case
we shall avoid this indexing for the sake of simplified notation.
Associated with Xt are the statistics

n n
D{n) = 2 } Xt‘2 ) xtxt_1°(xl+xn) «ug Da(n) g Z o Z 5 :

D(n) counts the number of symbol changes in the binary series and
hence it counts the number of crossings of level a by Z, . When X, +
Xn = 0, Da(n) counts the number of upcrossings of level a by Zt' We
shall find the distribution of D(n), n fixed, for level a =0 and the
asymptotic distribution of Da(n), as a,n + ® in a suitable manner,
when Xt is either a first or second-order Markov chain. The same
technique applies to higher order chains.

We shall make use of the results in Kedem (1976,a). Consequently

we define




2
p = Pr(ZtZa), A, = PP(ZtZaIZt_kZa), k=1,2
we P (2.2alz, .=a, 2 __,28),
S=3X,, Ry = 8NN ., B, = EXX, ., C0=3X X X ., H=X +X,
U R, Wl N R

For a review of level crossings problems and an extensive biblio-

graphy see Leadbetter (1972).

2. The number of axis crossings. In this section a = 0 and p = 1/2.

That is Pr(ZtZO) - [ 0

Theorem 1. If Xt is a first-order Markov chain, then the number of
axis crossings by Zt’ t=1,...,2, has a binomial distribution

b(n-l,l-Xl).
Proof. The probability of a 0-1 series for which D(n) = d4 is given by

- S dy(n-1)-d (1)
.,Xn-x ) = 5 (l—)\l) )\l

Pr(xl=x n

1°°°

and there are 2(";1) such sequences. Multiply this number by (1) to

obtain the desired binomial distribution.

Observe that under the conditions of the theorem D(n) is minimal
sufficient for xl and the maximum likelihood estimate of Xl is il =
{(n-1)-D(n)}/(n-1) while Vﬁ(il-k) is asymptotically N(O,Kl(l-kl)).

Just when may we expect the above binomial distribution to be a
reasonable approximation to the actual distribution of the number of
axis crossings? So, consider a stationary AR(1l) process Zt =¢Zt_l +
Ugps [¢] < 1, u, are independent N(0,1) variates. For each of 19
values of ¢ 1000 time series of size 5 were generated. The size was

fixed at 5 to allow the expected number of successes in each cell in

a multinomial experiment to exceed 1 in 1000 repetitions. We wish to

1

test Hy: D(n)~b(n-1,1-1;) where now n = 5 and A = % B % sin " (¢). The
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¥ results of the 19 chi-square goodness of fit tests are summarizeL in
Table 1. It is seen that the results are very satisfactory for
-0.588<¢ <0.600 where H, is accepted at level of significance 0.01.
This example indicates that the above binomial distribution is rea-
sonable when neighboring observations in the Zt series are at most
moderately correlated.
Table 1: Observed (expected) frequencies of the number of axis cros-

sings by Zy = ¢Z+.3 *Upe TR Lyee0sdy ue N(0,1), in 1000
independent realizations.

—
¢ A 0 1 2 3 4 X€4)
.809 .800 457 322 171 43 7 56.235%
(409.6) (409.6) (153.6) (25.6) (1.6)
.707 .750 358 366 190 73 13 50.716%
(316.4) (421.87) (210.94) (46.87) (3.91)
.600 .705 259 405 243 80 13 6.505
(247) (413.4) (260) (72.3) (7.6)
.588 .700 253 400 252 81 1y 6.303
(240.1) (411.6) (264.6) (75.6) (8.1)
.500 .666 209 391 290 87 23 11.548
(197.4) (394.9) (296.2) ¢98.72) (12.3)
.400 .631 169 365 318 119 29 7.387
(158.5) (370.8) (325.2) (126.8) (18.5)
.309 .600 143 331 336 157 33 4,483
(129.6) (345.6) (345.6) (153,6) (25.6)
<280 580 127 315 34y 173 4] 5.783
(113.1) (327.8) (356) L7 2) . Lalal)
.100 .532 85 281 363 215 56 1.908
(80) (282) (372) (218) (u8)
.000 .500 6.4 254 378 233 71 2.436
(62.5) (250) (375) (250) (62.5)
-.100 .468 53 217 366 374 90 2.099
(48) (218) (372) (282) (80)
-.250 .u420 317 175 345 315 128 4.007
(31.1) - (173.2) (356) (327.8) (113.1)
-.309 .400 30 160 341 326 143 3.580
(25.6) (153.6) (345.6) (345.6) (129.6)
-.400 .369 22 133 335 335 175 6.433
(18.5) (126.8) (325.2) (370.8) (158.5)
-.500 .333 18 118 294 365 210 7.791
(12.3) (98.72) (296.2) (394.9) (197.4)
/ -.588 .300 18 97 258 358 269 28.779%
¥ (8.1) (75.6) (264.6) (411.6) (240.1)
7 -.600 .295 18 93 259 358 272 30.116%
3 (7.6) (72.9) (260) (413.4)  (247)
-.707 .250 12 71 213 343 361 50.268%
(3.91) (46.87) (210.94) (421.87) (316.4)
-.809 .200 10 37 157 305 491 92.191%

(1.6) (25.6) (153.6) (409.6) (409.6)

'}ndicatol that the hypothesis H, is rejected at level of significance 0.01.

o —— e g——




A more realistic assumption is that Xt displays a higher order
dependence. The extension of Theorem 1 to the case when Xt is a
k th-order Markov chain is somewhat more involved but straightforward.
For this purpose let us consider the second-order case in detail; the
k th-order case follows an identical argument.

When Xt is a second-order chain it was shown in Kedem (1976,a)

that {S,R ,C,H4U,V} is a set of sufficient statistics for Xl,x2,u,

1*Ra
and their joint distribution is given there. An equivalent but a
more convenient set of sufficient statistics is {S$,D(n),F,Z',H,U,V}
where D(n) = 2S-2R1-H, F = Rl-C is the number of l-runs in the Xt
series with two or more 1l's and 2' = R2—C is the number of 0-runs be-
tween the first and last 1 with exactly one 0. It follows that the
joint distribution of the last set can be obtained from that of the
first one. We have

glasd,f, 2" ,Wougyv) = PP(S=s, D(n)=d, F=f,Z2'=2', H=h, U=u, V=v)

i
=d .
= N(S,d,f,l',h,u,V)Kn(ElE2EBEQ)S(525354)2 (636“)-f€§ (2)

1
T h u,v
5700 TR B e L

where Kn,51’£2,...,57 are functions of p = l/Z,Xl’kz,u and are given

in Kedem (1976) and

N(s,d,f,z',h,u,¥v)

f-1 /

-

z'

( 2 )(max(h,u))(%{d+h)-l)( n—s-%(d—h)-2 )(%(d-h))(s—%{d+h)—l\

max(h,u) v %(d-h)-z'—u+v f-v

Theorem 2. If Xt is a second order Markov chain then the distribution

of the number of crossings by Zt’ t=1,...,n is given by

v+§(d-h) L(d+h) -1

P _(D(n)-d) = ) ) }  g(s,a,f,2" ,h,u,v), (3)
o (h,u,v) s=h+u f=zv z'=0

h+u+n -4




ST

where (h,u,v) takes values in (1,2,1),(1,1,1),(1,1,0),(1,0,0) when
d is odd and in  (2,2,2),£2,1,1),(0,2,0),(2,0,0),{0,1,0},(0,0,0)
when d is even.

In principle it is possible to extend our method to obtain the
distribution of D(n) when the 0-1 series displays a higher order de-
pendence but the joint distribution of the sufficient statistics be-

bomes messier.

3. Upcrossings of a high level. 1In this section we shall elicit the

Poisson nature of the upcrossings of a high level a by Zt’ by using
the above method of examining the joint distribution of several suf-
ficient statistics. The Poisson nature of these upcrossings [3] has been
known for nearly twenty years for continuous parameter Gaussian pro-

cesses under various moment conditions. Z however, is not neces-

t’

sarily Gaussian.

Theorem 3. Assume Xt is a first order Markov chain. If a,n + « such
that
(1) nPr(Zt:Za) = a, o remains constant,
$ s > > =
(ii) P (2 zalz__ Zza) = N (a) » ),
then
—a(1-X\,)
k
e Y la(1-a)]
lim Pr(Da(n)=k) = K 5 QL (%)

a-»mw

Proof. A simple combinatorial argument shows that

s-1\[/n~-s-1
k s-n+2,s-k 2k
= * s = A -
Pr(S s,Da(n) k,H=0) (s-k)( . )p q 1 (1 kl)

'(l-2p+xlp)n—l-s-k.

Replace p by a/n and q by 1-a/n and note that {H=0} becomes a sure

event as a » », Then




6
-a(l-X\.)
La(1-x,) 7% Vs e
lim P _(S=s,D_ (n)=k) = 3] (1-X )N (5)
a-—re : \k".l.
and sum over s.
As consequences we have firstly
—a(l-xl)
lim P ( max Z,sa) = e s (6)

a-reo B2k ys ve sl
and secondly, the asymptotic distribution of S, the total time spent
above a high level a, is the Polya-Aeppli distribution obtained by
summing (5) over k, with mean a and variance a(l+Xl)/(l-Xl).
Similar results can be obtained for the second-order case. To
simplify matters assume z' - 0 as a » » with probability one, which

happens if and only if XQ-Xlu + 0, a =+ »,

Theorem 4. If X, is a second-order Markov chain such that (i) and
—— ———

t
(ii) above hold and
(iii) PP(thaIZt_lza,Zt_22a) = w(a) - u,

(iv) (X2~Xlu)z + 1 with probability one, as a =+ =,

then Da(n) has an asymptotic Poisson distribution with parameter
a(l-kl).
From (2) with p = a/n and the fact that {H=0, U=0, V=0} be-

Proof.

comes a sure event, it follows that

ak -a(l—Xl) k\ [s-k-1
lim Pr(S=S,Da(n)=k,F=f) = ETQ ( )

a -+ & f-1
xfus'k'f(1-u)2f[1-xl(2-u)1k‘f.
But
L s-k-1
; ( )us-k-f . thuy?
s=k+f\ F-1

and

YT Nt g




k
f k-F _ k
. (f)[kl(l—u)] [1-2(2-w) 7% = (1A,

k
)
f=

-a(l-X\.)

1

so that P_(D_(n)=k) + e [a(l-xl)]k/kz ’

4., Some applications.

When parameters of interest are related in some fashion to the
number of axis crossings, Theorem 1 can be used in deriving
appropriate estimators and their approximate distributions. We

bring two such cases.

Estimation in AR(1l). Suppose Z, = ¢Z,_, t u. is a stationary
AR(1l) process as above, and suppose it is clipped at level D. If
the clipped process xt approximates a first order Markov chain,

then the maximum likelihood estimate of ¢ based on the clipped data

is

el $ 5 : (n-1) - (# of axis crossings) _ L}
= ¢(Kl) = “gig n{ ey 5

Experience shows [2] that this estimator behaves remarkably well
even when |¢| 1is close to 1. When |¢| is small so that the
binomial approximation to the distribution of the number of axis

crossings is adequate, it follows directly that

VE($-6) =2+ N(0,n°X (1-X))), n = =.

Estimation of the mean frequency. Let 2Z(t) - < t < =, be a zero

mean stationary Gaussian process with correlation function p(t).
Assume that the sample functions are continuous with probability

one and that in a sufficiently small time interval, say A, the




probability that 2Z(t) has more than one 0 is negligible., Con-
sider the interval [0,t] and partition it into (n-1) subinter-
vals of size A. Then (n-1)A = T. ¥We hold T fixed as A =+ 0

and n - @ simultaneously. Let Xi,n take the wvalue 1 when
Z((i-1)A) = 0, and O othepwiae, 1 = 1....,0, and et 'D(n)

be the number of symbol changes in the Xi % Sepdeg O IE B is the

k]

true number of axis crossings in [0,T) then D(n) -+ D, n + «(A~>0)

= G As a first approximation to the distribution of D(n) we take
D(n) ~ b(n-1, l-Xl n)' Thus, by l'Hospital's rule
]
; X =
E(D) = 1im E(D(n)) = 1im ~[:-Lsi Mpan1 = Iy,
AR R il
n-se fid®
Ly
y = [-p"(0)1Y/

provided the derivative exists. y 1s called the mean frequency.

A reasonable estimate for y is then [4]

=

DG
P,

whose approximate distribution is easily obtained from that of D(n).
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